LE NORME TECNICHE PER LE COSTRUZIONI - D.M. 14 Gennaio 2008
AZIONE SISMICA E PROGETTAZIONE PER AZIONI SISMICHE

Progettazione sismica di edifici in c.a.

Aspetti normativi

DISPENSA

Prof. Paolo Riva
Dipartimento di Progettazione e Tecnologie
Facoltà di Ingegneria
Università di Bergamo
V. Marconi, 5 – 24044 Dalmine (BG)
E-Mail: paolo.riva@unibg.it
INDICE

<table>
<thead>
<tr>
<th>Capitolo</th>
<th>Pag.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. EDIFICI IN C.A.</td>
<td>5</td>
</tr>
<tr>
<td>2. MATERIALI</td>
<td>8</td>
</tr>
<tr>
<td>2.1 Calcestruzzo</td>
<td>8</td>
</tr>
<tr>
<td>2.1.1 Comportamento del calcestruzzo confinato con staffe</td>
<td>9</td>
</tr>
<tr>
<td>2.1.2 Calcestruzzo confinato secondo EC2</td>
<td>12</td>
</tr>
<tr>
<td>2.2 Acciaio da Armatura</td>
<td>14</td>
</tr>
<tr>
<td>2.2.1 Comportamento Meccanico</td>
<td>15</td>
</tr>
<tr>
<td>3. TIPOLOGIE STRUTTURALI E FATTORI DI STRUTTURA</td>
<td>21</td>
</tr>
<tr>
<td>3.1 Fattori di Struttura</td>
<td>25</td>
</tr>
<tr>
<td>4. MODELLAZIONE DELLA STRUTTURA ED ANALISI</td>
<td>27</td>
</tr>
<tr>
<td>5. DIMENSIONAMENTO E VERIFICA EGLI ELEMENTI STRUTTURALI</td>
<td>28</td>
</tr>
<tr>
<td>5.1 Telai - Definizioni (punto 5.1.2 – EC8) e Comportamento</td>
<td>28</td>
</tr>
<tr>
<td>5.2 Comportamento di Elementi di Strutture a Telaio</td>
<td>29</td>
</tr>
<tr>
<td>5.3 TRAVI</td>
<td>34</td>
</tr>
<tr>
<td>5.3.1 Limiti dimensionali</td>
<td>34</td>
</tr>
<tr>
<td>5.3.2 Sollecitazioni nelle Travi</td>
<td>34</td>
</tr>
<tr>
<td>5.3.3 Verifiche agli SLU di Travi</td>
<td>35</td>
</tr>
</tbody>
</table>
5.3.4 Dettagli Costruttivi per le Travi

5.4 PILASTRI

5.4.1 Limiti dimensionali

5.4.2 Sollecitazioni nei Pilastri

5.4.3 Verifiche agli SLU di Pilastri

5.4.4 Dettagli Costruttivi per i Pilastri

5.5 Nodi Travi-Pilastro

5.5.1 Definizioni

5.6 Comportamento di Nodi Travi-Pilastro

5.7 NODI TRAVI-PILASTRO

5.7.1 Sollecitazioni nei nodi (EC 8 - solo per DCH)

5.7.2 Verifiche di resistenza (solo per CD A e DC H)

5.7.3 Dettagli Costruttivi

5.8 Pareti - Definizioni (punto 5.1.2 – EC8 – analoghe per NTC)

5.9 Comportamento di Strutture a Pareti

5.9.1 Meccanismi di Comportamento di Pareti Singole

5.9.2 Meccanismi di Comportamento di Travi d’accoppiamento

5.10 PARETI

5.10.1 Limiti dimensionali

5.10.2 Sollecitazioni nelle Pareti

5.10.3 Verifiche di Resistenza di Pareti
5.10.4 Dettagli Costruttivi per le Pareti... 85
5.11 EC8 - Travi di Collegamento (DC H).. 92
5.12 Il Ruolo dei Tamponamenti nella Risposta Sismica.. 98
5.13 EC8 – Effetti dei Tamponamenti sulle Strutture .. 103
 5.13.1 Irregolarità dovute alla presenza dei tamponamenti .. 103
 5.13.2 Limitazione del danno nei tamponamenti ... 104
 5.13.3 Effetti locali dovuti a tamponamenti in muratura o calcestruzzo ... 105
5.14 NTC – Effetti dei Tamponamenti sulle Strutture.. 106

BIBLIOGRAFIA

1. EDIFICI IN C.A.

L'impostazione delle norme, con le regole di progetto che da essa discendono, prevede che gli edifici in cemento armato posseggano in ogni caso una adeguata capacità di dissipare energia in campo inelastico per azioni cicliche ripetute, senza che ciò comporti riduzioni significative della resistenza nei confronti delle azioni sia verticali che orizzontali.

Ai fini di un buon comportamento dissipativo d’insieme, le deformazioni inelastiche devono essere distribuite nel maggior numero possibile di elementi duttili, in particolare nelle travi, evitando al contempo che esse si manifestino negli elementi meno duttili (ad es. i pilastri) e nei meccanismi resistenti fragili (ad es. resistenza a taglio, resistenza dei nodi trave-pilastro). Il procedimento adottato sia nell’Eurocodice 8, sia nelle Norme Tecniche, per conseguire questo risultato si indica con il nome di "criterio della gerarchia delle resistenze" (GR).

Entrambe le norme sono calibrate per due livelli di Capacità Dissipativa, o Classi di Duttilità (CD): alta (CD"A") e bassa (CD"B"), mentre per l’EC8 sia la classe media (CD “M”). Il livello CD"A" prevede che sotto l’azione sismica di progetto la struttura si trasformi in un meccanismo dissipativo ad elevata capacità, mentre al livello CD”B" (o “M”) si richiede essenzialmente che tutti gli elementi a funzionamento flessionale: travi, pilastri e pareti, posseggano una soglia minima di duttilità.

In funzione del livello di duttilità che si intende conseguire variano sia le modalità di applicazione del criterio della gerarchia delle resistenze sia l'entità dell'azione sismica di progetto, regolata dal valore del fattore di Struttura q.
PROBLEMI!

- Le strutture in c.a. sono costituite da un materiale **FRAGILE**, il calcestruzzo (deformazione massima $\varepsilon_{cu} \approx 3\div 4\%$), ed un materiale **DUTTILE**, l’acciaio da armatura (deformazione massima $\varepsilon_{su} \approx 7\div 8\%$);

È possibile rendere “Duttile” il Calcestruzzo?
L’acciaio è un materiale duttile (almeno dovrebbe!), ma è sufficiente che sia anche solo elastico-perfettamente plastico, o deve essere dotato di incrudimento?

Acciaio Elastico

\[
\Delta_{\text{max}} = \Delta_{\text{el}} + \Delta_p
\]

\[
\Delta_p = \theta_p \cdot L_p
\]

L_p \to 0 - \theta_p deve tendere a \(\infty \) per avere \(\Delta_{\text{max}} \) significativa

Acciaio con Incrudimento

\[
\Delta_{\text{max}} = \Delta_{\text{el}} + \Delta_p
\]

\[
\Delta_p = \theta_p \cdot L_p
\]

\[\text{L}_p > 0 - \theta_p\] più contenuta consente di avere \(\Delta_{\text{max}} \) sufficienti
2. MATERIALI

2.1 Calcestruzzo

- Non ammesso calcestruzzo di classe inferiore a C20/25;
- La resistenza e la duttilità del calcestruzzo aumentano notevolmente in presenza di stati di compressione tri-assiale (Fig. 11.1).

![Diagram](image)

Fig. 11.1 – Legame σ-ε al variare della pressione di confinamento in prove tri-assiali.
2.1.1 Comportamento del calcestruzzo confinato con staffe

- Dato il comportamento tri-assiale, l’aggiunta di staffe può comportare un sensibile miglioramento del calcestruzzo sotto stati “mono-assiali” sia in termini di resistenza, sia, soprattutto, in termini di duttilità (Fig. 11.2 e 11.3);

![Fig. 11.2 – Legame σ-ε su cilindri confinati con spirali in acciaio.](image1)

![Fig. 11.3 – Legame Forza Normale - deformazione su prismi a base quadrata con diverso contenuto di armatura di confinamento (staffe).](image2)
Per bassi valori di compressione nel calcestruzzo confinato, le staffe risultano solo marginalmente soggette a trazione (dilatazione trasversale del calcestruzzo trascurabile), e quindi non forniscono alcun contributo apprezzabile, ed il comportamento del calcestruzzo è simile a quello del materiale non confinato;

Perché il confinamento sia efficace le staffe devono essere ravvicinate (vd. Meccanismi di confinamento in Figg. 11.4, 11.5). Staffe vicine limitano inoltre la tendenza all’instabilità delle armature compresse, migliorando sensibilmente le caratteristiche di duttilità della sezione, soprattutto in presenza di azioni cicliche;

Fig. 11.4 – Effetto del confinamento in presenza di azione assiale.

Fig. 11.5 – Calcestruzzo confinato e non confinato nelle sezioni armate con staffe.
- Il calcestruzzo all’esterno delle staffe (copriferro) è caratterizzato da comportamento non-confinato, e non può essere considerato come resistente qualora si raggiungano valori di deformazione che superino la deformazione limite per il calcestruzzo non-confinato (tipicamente in zona sismica, quando si fa riferimento al comportamento duttile degli elementi in c.a. inflessi o presso-inflessi);

- Dato il considerevole aumento della duttilità del calcestruzzo confinato, si osserva un notevole incremento della duttilità delle sezioni inflesse e (soprattutto) presso-inflesse;

- Sono disponibili in letteratura legami costitutivi da utilizzare per l’analisi non-lineare o per le verifiche di duttilità delle sezioni in c.a. confinate (es. Fig. 11.6). Dal punto di vista della resistenza sezionale, la presenza di confinamento ha un effetto solamente marginale (se sfrutto il confinamento non posso considerare il copriferro, quindi il braccio della coppia interna non cambia apprezzabilmente, malgrado migliori la resistenza a compressione del materiale).

Fig. 11.6 – Esempio di legame costitutivo per calcestruzzi confinati (Park et al.).
2.1.2 Calcestruzzo confinato secondo EC2

- Il confinamento del calcestruzzo comporta una modifica del legame sforzo-deformazione efficace: si ottengono resistenze maggiori e deformazioni critiche superiori;

- In assenza di dati più precisi, si può utilizzare il legame $\sigma_c - \varepsilon_c$ illustrato in figura 11.7, nella quale le diverse quantità hanno il seguente significato:

$$f_{ck,c} = f_{ck}(1.000 + 5.0 \frac{\sigma_2}{f_{ck}}) \quad \text{per} \quad \sigma_2 \leq 0.05f_{ck}$$

$$f_{ck,c} = f_{ck}(1.125 + 2.5 \frac{\sigma_2}{f_{ck}}) \quad \text{per} \quad \sigma_2 > 0.05f_{ck}$$

$$\varepsilon_{c2,c} = \varepsilon_{c2}(f_{ck,c}/f_{ck})^2$$

$$\varepsilon_{cu2,c} = \varepsilon_{cu2} + 0.2 \frac{\sigma_2}{f_{ck}}$$

dove $\sigma_2 (= \sigma_3)$ è la tensione di confinamento efficace allo Stato Limite Ultimo, mentre ε_{c2} e ε_{cu2} sono forniti in Tabella 11.1. Il confinamento può essere generato da staffe adeguatamente chiuse (uncini a 135°), che arrivano a snervamento a causa della dilatazione trasversale del calcestruzzo compresso.

![Fig. 11.7 – Legame $\sigma_c - \varepsilon_c$ per il calcestruzzo confinato.](image)

- Il confinamento efficace può essere valutato, con riferimento alle formule riportate in Fig. 11.8, come:

$$\frac{\sigma_2}{f_{ck}} = 0.5\alpha_\omega \frac{\omega}{\omega_d} = 0.5\alpha_n \alpha_s (\frac{\text{Vol}_{\text{staffe}}}{\text{Vol}_{\text{cls,confinato}}})(\frac{f_{ydw}}{f_{cd}})$$
a) for rectangular cross sections:

\[\alpha_u = 1 - \sum_{n} b_i^2 / 6b_w h_o \]

\[\alpha_s = (1 - s / 2b_w)(1 - s / 2h_o) \]

where:

- \(n \) total number of longitudinal bars laterally engaged by hoops or cross ties;
- \(b_i \) distance between consecutive engaged bars (see Fig. 5.7; also \(b_w, h_w, s \)).

b) for circular cross sections with hoops and diameter of confined core \(D_o \) (to the centreline of hoops):

\[\alpha_u = 1 \]

\[\alpha_s = (1 - s / 2D_o)^2 \]

c) for circular cross sections with spiral reinforcement:

\[\alpha_u = 1 \]

\[\alpha_s = (1 - s / 2D_o) \]

Fig. 11.8 – Calcolo del confinamento efficace da EC 2.
2.2 **Acciaio da Armatura**

Per le strutture si deve utilizzare acciaio **B450C**. Si consente l’utilizzo di acciai di tipo **B450A**, con diametri compresi tra 5 e 10 mm, per le reti e i tralicci; se ne consente inoltre l’uso per l’armatura trasversale unicamente se è rispettata almeno una delle seguenti condizioni: **elementi in cui è impedita la plasticizzazione** mediante il rispetto del criterio di gerarchia delle resistenze, **elementi secondari, strutture poco dissipative** con fattore di struttura q 1,5.

<table>
<thead>
<tr>
<th>CARATTERISTICHE</th>
<th>REQUISITI</th>
<th>FRATTILE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensione caratteristica di snervamento (f_{yk})</td>
<td>(\geq f_{y, nom})</td>
<td>5.0</td>
</tr>
<tr>
<td>Tensione caratteristica di rottura (f_{tk})</td>
<td>(\geq f_{t, nom})</td>
<td>5.0</td>
</tr>
<tr>
<td>((f_{y}/f_{y})_k)</td>
<td>(\geq 1.15)</td>
<td>10.0</td>
</tr>
<tr>
<td>((f_{y}/f_{y, nom})_k)</td>
<td>(\leq 1.35)</td>
<td>10.0</td>
</tr>
<tr>
<td>Allungamento ((A_{ef})_k):</td>
<td>(\geq 7.5 %)</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Diametro del mandrino per prove di piegamento a 90° e successivo raddrizzamento senza cricche:

- \(\phi < 12 \) mm: \(4 \phi \)
- \(12 \leq \phi \leq 16 \) mm: \(5 \phi \)
- \(16 < \phi \leq 25 \) mm: \(8 \phi \)
- \(25 < \phi \leq 40 \) mm: \(10 \phi \)

<table>
<thead>
<tr>
<th>CARATTERISTICHE</th>
<th>REQUISITI</th>
<th>FRATTILE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensione caratteristica di snervamento (f_{yk})</td>
<td>(\geq f_{y, nom})</td>
<td>5.0</td>
</tr>
<tr>
<td>Tensione caratteristica di rottura (f_{tk})</td>
<td>(\geq f_{t, nom})</td>
<td>5.0</td>
</tr>
<tr>
<td>((f_{y}/f_{y})_k)</td>
<td>(\geq 1.05)</td>
<td>10.0</td>
</tr>
<tr>
<td>((f_{y}/f_{y, nom})_k)</td>
<td>(\leq 1.25)</td>
<td>10.0</td>
</tr>
<tr>
<td>Allungamento ((A_{ef})_k):</td>
<td>(\geq 2.5 %)</td>
<td>10.0</td>
</tr>
</tbody>
</table>
2.2.1 Comportamento Meccanico

- Il comportamento mono-assiale in funzione della resistenza caratteristica a snervamento è qualitativamente illustrato in Fig. 11.9;

![Diagram Fig. 11.9](image)

Fig. 11.9 – Andamento qualitativo del legame $\sigma_s - \varepsilon_s$ in funzione del tipo di acciaio.
- Comportamento di acciaio saldabile tipo Tempcore (Fig. 11.10, [ECSC Steel RTD Programme]):
 Materiale “bi-fase” con corteccia martensitica e cuore ferritico-perlitico;
 Resistenza a snervamento (R_u) tipicamente f_{sy} > 500 MPa;
 Deformazione ultima (A_{gt}) circa uguale a 8%
 Resistenza ultima (R_m) circa pari a 1.15 f_{sy}.

Fig. 11.10a - Sezione trasversale dell’armatura con corteccia martensitica e cuore ferritico-perlitico

Fig. 11.10b – Confronto tra il legame s-e di barra integra e comportamento di cuore o corteccia.
• Differenza di comportamento tra acciai Tempcore, Reti da acciaio laminato, e Reti da acciaio trafilato a freddo.

Fig. 11.11 – Legame $\sigma_s-\varepsilon_s$ per diversi tipi di acciaio in commercio.
Fig. 11.12 – Comportamento di acciaio B500B non saldato oppure saldato testa a testa: a) φ16; b) φ24.

Fig. 11.13 – Comportamento di acciaio B500B non saldato oppure staffa φ8 saldata a croce su barra: a) φ16; b) φ24.
Fig. 11.14 – Comportamento a fatica oligociclica di armatura φ16 in acciaio Tempcore

Fig. 11.15 – Comportamento a fatica oligociclica per barre in acciaio B500B saldato testa a testa: a) φ16; b) φ24.
Fig. 11.16 – Interpretazione del meccanismo di comportamento di armatura soggetta a carichi ciclici

Fig. 11.17 – Meccanismo di rottura di armatura soggetta a carichi ciclici
3. **TIPOLGIE STRUTTURALI E FATTORI DI STRUTTURA**

Le strutture sismo-resistenti in cemento armato previste dalle presenti norme possono essere classificate nelle seguenti tipologie:

strutture a telaio, nelle quali la resistenza alle azioni sia verticali che orizzontali è affidata principalmente a telai spaziali, aventi resistenza a taglio alla base $\geq 65\%$ della resistenza a taglio totale;

strutture a pareti, nelle quali la resistenza alle azioni sia verticali che orizzontali è affidata principalmente a pareti, singole o accoppiate, aventi resistenza a taglio alla base $\geq 65\%$ della resistenza a taglio totale. Una parete è un elemento strutturale di supporto per altri elementi che ha una sezione trasversale caratterizzata da un rapporto tra dimensione massima e minima in pianta superiore a 4. Si definisce parete di forma composta l’insieme di pareti semplici collegate in modo da formare sezioni a L, T, U, I ecc. Una parete accoppiata consiste di due o più pareti singole collegate tra loro da travi duttili (“travi di accoppiamento”) distribuite in modo regolare lungo l’altezza. Ai fini della determinazione del fattore di struttura q una parete si definisce accoppiata quando è verificata la condizione che il momento totale alla base prodotto dalle azioni orizzontali è equilibrato, per almeno il 20%, dalla coppia prodotta dagli sforzi verticali indotti nelle pareti dalla azione sismica;

strutture miste telaio-pareti, nelle quali la resistenza alle azioni verticali è affidata prevalentemente ai telai, la resistenza alle azioni orizzontali è affidata in parte ai telai ed in parte alle pareti, singole o accoppiate; se più del 50% dell’azione orizzontale è assorbita dai telai si parla di *strutture miste equivalenti a telai*, altrimenti si parla di *strutture miste equivalenti a pareti*;
strutture deformabili torsionalmente, composte da telai e da pareti, la cui rigidezza torsionale non soddisfa ad ogni piano la condizione

\[r/l_s > 0.8 \]

do che:

\[r^2 = \text{rapporto tra rigidezza torsionale e flessionale di piano (‘torsional radius’)} \]

\[l_s^2 = (L^2 + B^2)/12 \] (L e B dimensioni in pianta dell’edificio)

strutture a pendolo inverso, nelle quali almeno il 50% della massa è nel terzo superiore dell’altezza della costruzione o nelle quali la dissipazione d’energia avviene alla base di un singolo elemento strutturale. Non appartengono a questa categoria i telai ad un piano con i pilastri collegati in sommità lungo entrambe le direzioni principali dell’edificio e per i quali la forza assiale non eccede il 30% della resistenza a compressione della sola sezione di calcestruzzo (tipico di strutture prefabbricate);

struttura a pareti estese debolmente armate, se, nella direzione orizzontale d’interesse, essa ha un periodo fondamentale, calcolato nell’ipotesi di assenza di rotazioni alla base, non superiore a TC, e comprende almeno due pareti con una dimensione orizzontale non inferiore al minimo tra 4,0m ed i 2/3 della loro altezza, che nella situazione sismica portano insieme almeno il 20% del carico gravitazionale

Le strutture delle costruzioni in calcestruzzo possono essere classificate come appartenenti ad una tipologia in una direzione orizzontale ed ad un’altra tipologia nella direzione orizzontale ortogonale alla precedente.

Se una struttura non è classificata come struttura a pareti estese debolmente armate, tutte le sue pareti devono essere progettate come duttili.
Fig. 10.1 – Sistemi torsionalmente stabili ed instabili

Fig. 10.2 – Effetti della torsione: (a) edifici instabili, (b) edifici stabili
Edifici a nucleo.

Pareti singole ed accoppiate

Tipologie di pareti accoppiate
3.1 Fattori di Struttura

Il fattore di struttura da utilizzare per ciascuna direzione della azione sismica è dato dalla seguente espressione:

\[q = q_0 \cdot K_W \cdot K_R \geq 1.5 \quad \text{(EC 8)} \]

- \(q_0 \) è legato alla tipologia strutturale
- \(K_W \) è un fattore che dipende dal meccanismo di collasso prevalente in strutture a pareti
- \(K_W = 1.00 \) per telai e sistemi accoppiati equiv. a telai
- \(K_W = (1 + \Sigma h_{wi}/\Sigma l_{wi})/3 \leq 1 \quad (\geq 0.5) \) per sistemi a pareti, sistemi accoppiati equiv. a pareti, e strutture a nucleo, dove \(h_{wi} \) e \(l_{wi} \) sono, rispettivamente, l’altezza e la dimensione in pianta prevalente delle pareti

Le strutture a pareti estese debolmente armate devono essere progettate in CD “B”.

Strutture aventi i telai resistenti all’azione sismica composti, anche in una sola delle direzioni principali, con travi a spessore devono essere progettate in CD ”B” a meno che tali travi non si possano considerare elementi strutturali “secondari”

<table>
<thead>
<tr>
<th>Tipologia</th>
<th>CD “B” – “M” EC8</th>
<th>CD “A” – “A” EC8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strutture a Telaio, a pareti accopiate, miste</td>
<td>3.0 (\alpha_u/\alpha_1)</td>
<td>4.5 (\alpha_u/\alpha_1)</td>
</tr>
<tr>
<td>Strutture a Pareti Singole</td>
<td>3,0</td>
<td>4.0 (\alpha_u/\alpha_1)</td>
</tr>
<tr>
<td>Strutture a deformabili torsionalmente</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Strutture a pendolo inverso</td>
<td>1.5</td>
<td>2</td>
</tr>
</tbody>
</table>

\(\alpha_1 \) moltiplicatore della forza sismica orizzontale (taglio alla base) per il quale il primo elemento strutturale raggiunge la sua resistenza flessionale;

\(\alpha_u \) moltiplicatore della forza sismica orizzontale (taglio alla base) per il quale si verifica la formazione di un numero di cerniere plastiche tali da rendere la struttura labile.

Il valore di \(\alpha_u/\alpha_1 \), può essere calcolato per mezzo di un analisi statica non lineare (push-over) e non può in ogni caso essere assunto superiore a 1,5.
Qualora non si proceda ad una analisi non lineare per la valutazione di α_u/α_1, i seguenti valori possono essere adottati:

a) Strutture a telaio o miste equivalenti a telaio;

- edifici a telaio di un piano: $\alpha_u/\alpha_1 = 1,1$
- edifici a telaio a più piani, con una sola campata: $\alpha_u/\alpha_1 = 1,2$
- edifici a telaio con più piani e più campate: $\alpha_u/\alpha_1 = 1,3$

b) Strutture a pareti o miste equivalenti a pareti

- strutture con solo due pareti non accoppiate per direzione orizzontale: $\alpha_u/\alpha_1 = 1,1$
- edifici a pareti non accoppiate: $\alpha_u/\alpha_1 = 1,1$
- edifici a pareti accoppiate o miste telaio-pareti: $\alpha_u/\alpha_1 = 1,2$

Quando risultasse $q < 1.5$, può essere adottato $q = 1.5$.

Per tipologie strutturali diverse da quelle precedentemente definite, ove si intenda adottare un valore $q > 1.5$, il valore adottato dovrà essere adeguatamente giustificato dal progettista.

Strutture aventi i telai resistenti all'azione sismica composti con travi a spessore, anche in una sola delle direzioni principali, devono essere progettate per la Classe di Duttilità CD''B''.

Strutture con grandi pareti debolmente armate, non potendo contare sulla dissipazione in cerniere plastiche, devono essere progettate per la Classe di Duttilità CD''B''.
4. MODELLAZIONE DELLA STRUTTURA ED ANALISI

Il modello della struttura su cui verrà effettuata l’analisi dovrà rappresentare in modo adeguato la distribuzione di massa e rigidezza effettiva considerando, laddove appropriato (come da indicazioni specifiche per ogni tipo strutturale), il contributo degli elementi non strutturali.

In generale il modello della struttura sarà costituito da elementi resistenti piani a telaio o a parete connessi da diaframmi orizzontali. Se i diaframmi orizzontali, tenendo conto delle aperture in essi presenti, sono sufficientemente rigidi, i gradi di libertà dell’edificio possono essere ridotti a tre per piano, concentrando masse e momenti di inerzia al centro di gravità di ciascun piano.

Gli edifici regolari in pianta possono essere analizzati considerando due modelli piani separati, uno per ciascuna direzione principale.

In aggiunta all’eccentricità effettiva, dovrà essere considerata un’eccentricità accidentale, spostando il centro di massa di ogni piano, in ogni direzione considerata, di una distanza pari al ±5% della dimensione massima del piano in direzione perpendicolare all’azione sismica.

Nel caso di edifici con struttura in cemento armato, composta acciaio-calcestruzzo e in muratura, la rigidezza degli elementi può essere valutata considerando gli effetti della fessurazione, considerando la rigidezza secante a snervamento. In caso non siano effettuate analisi specifiche, la rigidezza flessionale e a taglio di elementi in cemento armato può essere assunta pari sino al 50% della rigidezza dei corrispondenti elementi non fessurati, ad esempio in funzione dell’influenza dello sforzo normale permanente.

Valori usuali per strutture in c.a.

- **Pilastri:** $0.4-0.7 I_g$ in funzione di N (cresce al crescere di N);
- **Travi in c.a.:** $0.4-0.5 I_g$
- **Pareti in c.a.:** $0.3-0.5 I_g$
5. DIMENSIONAMENTO E VERIFICA EGLI ELEMENTI STRUTTURALI

5.1 Telai - Definizioni (punto 5.1.2 – EC8) e Comportamento

ZONA CRITICA
Zona di un elemento sismo-resistente **primario**, dove si manifesta la combinazione più avversa di azioni (M, N, V, T) e dove si può formare una cerniera plastica;

TRAVE
Elemento strutturale soggetto prevalentemente ad azione flessionale ed ad una azione assiale normalizzata \(\nu = \frac{N_{Ed}}{A_{f_{cd}}} \leq 0,1 \) (le travi sono generalmente orizzontali);

PILASTRO
Elemento strutturale che supporta azioni gravitazionali per compressione assiale o è soggetto ad una azione assiale normalizzata \(\nu = \frac{N_{Ed}}{A_{f_{cd}}} > 0,1 \) (i pilastri sono generalmente verticali);
5.2 Comportamento di Elementi di Strutture a Telaio

Differenza di risposta in travi al variare dell’armatura di confinamento
Comportamento ciclico di nodo trave colonna.

Comportamento ciclico di sezione di estremità di pilastro

Riduzione della rigidezza a taglio e “pinching” in una trave tozza
(Bertero&Popov, 1977)
<table>
<thead>
<tr>
<th>Quadro fessurativo a $3\delta_y$</th>
<th>Distacco copriferro a $6\delta_y$</th>
<th>Fessure dopo 2 cicli a $6\delta_y$</th>
<th>Fessure dopo 3 cicli a $6\delta_y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formazione di una cricca nell’armatura longitudinale</td>
<td>Apertura della staffa alla base</td>
<td>Dettaglio dell’armatura longitudinale rotta</td>
<td></td>
</tr>
</tbody>
</table>
Differenza di comportamento di pilastri con diversa armatura di confinamento.
Danneggiamento di pilastri soggetti ad elevata compressione e flessione ciclica: (a) diagramma del momento; (b) diagramma del taglio; (c) sketch del danno; (d) azione assiale.

Danneggiamento di pilastri soggetti ad elevata compressione e taglio ciclico: (a) diagramma del momento; (b) diagramma del taglio; (c) azione assiale; (d) sketch del danno.

Espulsione esplosiva di copriferro in pilastro corto: (a) diagramma del momento; (b) diagramma del taglio; (c) azione assiale; (d) sketch del danno.
5.3 TRAVI

5.3.1 Limiti dimensionali

- Eccentricità max. trave rispetto al pilastro:
 \(e \leq \frac{b_c}{4} \) dove \(b_c \) è la larghezza del pilastro in direzione normale all’asse della trave (necessario per assicurare un trasferimento efficace delle azioni cicliche nel nodo trave-pilastro)

- Larghezza massima della trave:
 \(b_w \leq \min\{b_c + h_w; 2b_c\} \) dove \(b_w \) e \(h_w \) sono rispettivamente la larghezza e l’altezza dell’anima della trave (necessario per poter sfruttare l’effetto del confinamento dell’azione assiale del pilastro sull’aderenza delle armature della trave che attraversano il nodo)

- Larghezza minima della trave
 \(b_w \geq 200\text{mm} - \frac{b}{h} \geq 0.25 \text{ (Solo NTC)} \)

5.3.2 Sollecitazioni nelle Travi

- Momenti flettenti ed azioni assiali sono determinati dall’analisi, mentre il taglio è calcolato applicando il Capacity Design, scrivendo l’equilibrio limite della trave utilizzando i momenti di estremità \(M_{id} \) illustrati in figura.

\[
M_{id} = \gamma_{Rd} M_{Rb,i} \cdot \min \left\{ 1, \frac{\Sigma M_{Rc}}{\Sigma M_{Rb}} \right\},
\]

\(\gamma_{Rd} = 1.0 \) per CDB e \(\gamma_{Rd} = 1.20 \) per CDA

\(M_{Rb} \) e \(M_{Rc} \) sono i momenti resistenti all’estremità di trave e pilastro, rispettivamente, questi ultimi calcolati in corrispondenza della azione assiale di progetto per la direzione del sisma considerata.
• Qualora una trave sia supportata da un’altra trave (non da un pilastro), M_{id} è il momento sollecitante della trave;
• Nel caso travi supportino elementi verticali (travi saltapilastro);
 a. Pareti strutturali non possono essere supportate da travi o piastre;
 b. Se una trave sismo-resistente primaria supporta un pilastro, non deve esserci alcuna eccentricità tra gli assi del pilastro e della trave, e la trave deve essere supportata direttamente da due pilastri o pareti.

5.3.3 Verifiche agli SLU di Travi

5.3.3.1 Classe di Duttilità M

• Il momento ed il taglio resistenti sono calcolati secondo le regole del c.a. (vd. Anche EC2);
• L’armatura superiore delle sezioni di estremità con sezione a T o L deve essere posizionata prevalentemente entro l’anima della trave. Solo parte di esso può essere posizionato all’esterno, ma comunque entro la larghezza efficace della flangia (vedi figura)

![Diagrama di travi e pilastri](image)
5.3.3.2 Prescrizioni Aggiuntive per Classe di Duttilità H

- La resistenza a Taglio viene calcolata secondo EC2, assumendo in zona critica una inclinazione $\theta = 45^\circ$ per il puntone compresso nel traliccio ad inclinazione variabile;

- In caso vi sia rischio di inversione del taglio alle estremità delle travi può essere necessario disporre armatura a taglio bi-diagonale, secondo che il rapporto $\zeta = V_{Ed,\text{min}}/V_{Ed,\text{max}}$ tra il taglio sollecitante minimo e massimo, derivato mediante applicazione del Capacity Design, assuma i seguenti valori:

 \[
 \begin{align*}
 \zeta \geq -0,5 & \quad \text{– Verifica a taglio secondo EC2;} \\
 \zeta < -0,5 & \quad \text{– una quasi completa inversione del taglio è attesa, nel qual caso si distinguono due situazioni:}
 \end{align*}
 \]

 - $|V_{Ed,\text{max}}| \leq (2 + \zeta) f_{ctd} b_w d$, dove f_{ctd} è la resistenza a trazione secondo EC2, vale quanto sopra;
 - $|V_{Ed,\text{max}}| > (2 + \zeta) f_{ctd} b_w d$ deve essere disposta armatura bi-diagonale (normalmente inclinata a 45°).

 Metà del taglio deve essere resistito da staffe e metà da armatura bi-diagonale. La verifica dell’armatura bi-diagonale viene effettuata imponendo:

 \[
 0,5V_{Ed,\text{max}} \leq 2A_s f_{yd} \cos \alpha,
 \]

 dove A_s è l’armatura inclinata che attraversa il piano di scorrimento potenziale (la sezione di estremità della trave) ed α è l’inclinazione di tale armatura ($\alpha = 45^\circ$ oppure $\alpha \approx (d-d’)/l_b$).
5.3.4 Dettagli Costruttivi per le Travi

5.3.4.1 Classe di Duttibilità B (M – EC8)

- Dimensione della zona critica in prossimità di cerniere plastiche:
 \[l_{cr} = h_w \] per sezioni in prossimità di pilastri;
 \[l_{cr} = h_w \] su ciascun lato di una potenziale cerniera plastica non in prossimità di un pilastro;
 \[l_{cr} = 2h_w \] per sezioni critiche di travi saltapilastro

- Ai fini di soddisfare i criteri di duttibilità locale, la duttibilità in termini di curvatura dovrà essere:
 \[\mu \phi \geq 2q_o - 1 \quad \text{se } T_1 \geq T_c \]
 \[\mu \phi \geq 1 + 2(q_o - 1) \frac{T_c}{T_1} \quad \text{se } T_1 < T_c \]

Tali valori sono basati sulla assunzione, generalmente conservativa per elementi in c.a., che \(\mu \phi = 2\mu \delta - 1 \) e che \(\mu \delta = q \) per \(T_1 \geq T_c \) e \(\mu \delta = 1 + (q - 1)\frac{T_c}{T_1} \) per \(T_1 < T_c \) (si veda teoria del fattore di duttibilità);

- In ogni sezione della trave, salvo giustificazioni che dimostri che le modalità di collasso della sezione siano coerenti con la classe di duttibilità adottata, il rapporto d’armatura tesa deve essere compresi tra i seguenti limiti:
 \[\frac{1.4}{f_{yk}} < \rho < \rho_{comp} + \frac{3.5}{f_{yk}} \]
 - per \(f_{yk} = 430\text{MPa} \) si ottiene \(\frac{1.4}{450} = 0.31\% \) \(\rho < \frac{7}{450} = 1.56\% \)

\(\rho \) è il rapporto geometrico di armatura tesa = \(A_s/(bh) \) oppure \(A_i/(bh) \)
\(A_s \) e \(A_i \) rappresentano l’area dell’armatura longitudinale tesa, rispettivamente superiore e inferiore;
\(\rho_{comp} \) è il rapporto geometrico relativo all’armatura compressa
\(f_{yk} \) è la tensione caratteristica di snervamento dell’acciaio (in N/mm²).
• L'armatura superiore per il momento negativo alle estremità delle travi deve essere contenuta per almeno il 75% entro la larghezza dell'anima e comunque, per le sezioni a T, entro la larghezza efficace illustrata in figura.

- Almeno 2 barre $\phi 14$ (per EC8 - $\phi 12$) sia sopra che sotto devono essere presenti per tutta la lunghezza della trave;
- Armatura compressa è almeno metà di quella tesa ($A'_s > 0.5A_s$) nella zona critica e ovunque > 0.25 armatura tesa;
- L’armatura superiore per tutta la lunghezza della trave deve essere almeno pari ad $\frac{1}{4}$ dell’area di armatura superiore alle estremità della trave.
- EC8 - La verifica di duttilità è implicitamente soddisfatta se:
 - l’armatura compressa è almeno metà di quella tesa ($A'_s > 0.5A_s$), oltre quanto necessario per la verifica a SLU;
 - $\rho \leq \rho_{max} = \rho' + 0.0018 \cdot \frac{f_{cd}}{\mu_{\phi} \cdot \eta_{sy,d} \cdot f_{yd}}$ dove $\rho = A_s/bd$ e $\rho' = A'_s/bd$, dove b è la larghezza della flangia compressa;
- EC8 - $\rho > \rho_{min} = 0.5 \left(\frac{f_{ctm}}{f_{yk}} \right)$ percentuale minima di armatura tesa per una trave primaria;
• Nella zona critica di una trave, le staffe (staffe chiuse con ganci a 135°, ancorati per almeno 10φ ed assicurati alle barre longitudinali) devono soddisfare i seguenti requisiti:
 - \(d_{bw} \geq 6\text{mm} \) diametro minimo delle staffe;
 - \(s \leq \min\{h_w/4; 24d_{bw}; 225\text{mm}; 8d_{bL}\} \) passo massimo delle staffe \((d_{bL} = \text{diametro armature longitudinali})\);
 - prima staffa entro 50mm dalla sezione terminale della trave.

\[\text{Disposizione armatura trasversale}\]

5.3.4.2 Prescrizioni Aggiuntive per Classe di Duttilità A (EC8 – H)

• Dimensione della zona critica in prossimità di cernere plastiche:
 \(l_{cr} = 1.5h_w \) per sezioni in prossimità di pilastri;
 \(l_{cr} = 1,5h_w \) su ciascun lato di una potenziale cerniera plastica non in prossimità di un pilastro;

• Almeno 2 barre \(\phi 14 \) sia sopra che sotto devono essere presenti per tutta la lunghezza della trave;

• L’armatura superiore per tutta la lunghezza della trave deve essere almeno pari ad \(\frac{1}{4} \) dell’area di armatura superiore alle estremità della trave (solo EC8 – anche per CD B nelle NTC).

• Nella zona critica di una trave, il passo delle staffe (staffe chiuse con ganci a 135°) deve essere minore o uguale a:
 - \(s \leq \min\{h_w/4; 24d_{bw}; 175\text{mm}; 6d_{bL}\} \) passo massimo delle staffe \((d_{bL} = \text{diametro armature longitudinali})\).
5.3.4.3 Armature alle estremità delle travi (NTC)

- Le armature longitudinali delle travi, sia superiori che inferiori, devono attraversare, di regola, i nodi senza ancorarsi o giuntarsi per sovrapposizione in essi. Quando ciò non risulti possibile, sono da rispettare le seguenti prescrizioni:
 - le barre vanno ancorate oltre la faccia opposta a quella di intersezione con il nodo, oppure rivoltate verticalmente in corrispondenza di tale faccia, a contenimento del nodo;
 - la lunghezza di ancoraggio delle armature tese va calcolata in modo da sviluppare una tensione nelle barre pari a 1,25 \(f_{yk} \), e misurata a partire da una distanza pari a 6 diametri dalla faccia del pilastro verso l’interno.
- La parte dell’armatura longitudinale della trave che si ancora oltre il nodo non può terminare all’interno di una zona critica, ma deve ancorarsi oltre di essa.
- La parte dell’armatura longitudinale della trave che si ancora nel nodo, deve essere collocata all’interno delle staffe del pilastro. Per prevenire lo sfilamento di queste armature il diametro delle barre non inclinate deve essere \(\leq \alpha_{bL} \) volte l’altezza della sezione del pilastro, essendo:

\[
\alpha_{bL} = \begin{cases}
\frac{7.5 \cdot f_{cm} \cdot 1 + 0.8 \nu_d}{\gamma_{Rd} \cdot f_{yd} \cdot 1 + 0.75k_D \cdot \rho_{comp} / \rho} & \text{nodi interni} \\
\frac{7.5 \cdot f_{cm} \cdot 1 + 0.8 \nu_d}{\gamma_{Rd} \cdot f_{yd}} & \text{nodi esterni}
\end{cases}
\]

- dove: \(\nu_d \) è la forza assiale di progetto normalizzata; \(k_D \) vale 1 o 2/3, rispettivamente per CD”A” e per CD”B”; \(\gamma_{Rd} \) vale 1.2 o 1, rispettivamente per CD”A” e per CD”B”.
- Se per nodi esterni non è possibile soddisfare tale limitazione, si può prolungare la trave oltre il pilastro, si possono usare piastre saldate alla fine delle barre, si possono piegare le barre per una lunghezza minima pari a 10 volte il loro diametro disponendo un’apposita armatura trasversale dietro la piegatura (vedi EC2).
RIEPILOGO DISPOSIZIONI COSTRUTTIVE TRAVI – NTC

Larghezza delle Travi:

\[b_w \geq 20\text{cm} \]
\[b_w \leq \min \{b_c + h_w; 2b_c\} \]

Disposizioni costruttive per le armature delle travi

ANCORAGGIO DELLE ARMATURE DELLE TRAVI
L'ancoraggio delle armature delle travi mediante piegatura deve essere contenuto nelle staffe del pilastro
Il diametro delle armature longitudinali nel nodo è limitato (vd. formule)
Se nodo troppo corto per ancoraggio vedi dettagli particolari per i nodi

Corrente che attraversa un nodo deve essere terminata oltre Lcr

La corrente che sia possibile sviluppare 1,5fkyk a partire da 60 dalla faccia del pilastro (armature tese)
Ancorare armature all'interno delle staffe in prossimità dell'estradossi dei pilastri

STAFFA DI CONTENIMENTO
Staffa rettangolare \(t_{\min} = 6\text{mm} \), terminata con ganci a 135°, prolungati per almeno 10 \(\phi \)

Passo Massimo
Staffa di Contenimento
\[\begin{align*}
 h_w/4 &\quad 244_{\text{DW}} \\
 225_{\text{mm}} &\quad 6_{\text{dl}} \\
 175_{\text{mm}} &\quad 6_{\text{dl}} \\
 140_{\text{mm}} &\quad 6_{\text{dl}}
\end{align*} \]

CD B

CD A

Zona confinata del pilastro

ARMATURE LONGITUDINALI

\[1.4 \frac{f_y}{f_{\text{yk}}} < \frac{\rho_{\text{comp}}}{\rho_{\text{yk}}} < 3.5 \frac{f_y}{f_{\text{yk}}} \]

Superiore e Inferiore

\(A_s,\text{sup} \) prevalentemente entro \(b_w \) e comunque entro \(b_{\text{eff}} \)

\[\begin{align*}
 \text{min.} &\quad 2\phi 14 \text{ sia sopra che sotto} \\
 \min A_{s,\text{sup}} &\quad 0.25 A_{s,\text{sup},\text{estremità}}
\end{align*} \]

\(A_{s,\text{compresso},\text{tesa}} > 0.5 A_{s,\text{tesa}} \), oltre quanto necessario per ULS

Giuonzione per sovrapposizione

Giuonzione per sovrapposizione Vd. EC2

\(t_{\min,\text{staffe}} = \min(h/4; 100\text{mm}) \)
RIEPILOGO DISPOSIZIONI COSTRUTTIVE TRAVI – EC8

Larghezza delle Travi:

\[b_w \geq 20\text{cm} \]
\[b_w \leq \min\{b_c + h_w, \ 2b_c\} \]

Eccentricità delle Travi:

\[e \leq b_c/4 \]

Disposizioni costruttive per le armature delle travi

ANCORAGGIO DELLE ARMATURE DELLE TRAVI
L’ancoraggio delle armature delle travi mediante piegatura deve essere contenuto nelle staffe del pilastro
Il diametro delle armature longitudinali nel nodo è limitato (vd. formule)
Se nodo troppo corto per ancoraggio vedi dettagli particolari per i nodi

Disposizioni costruttive per le armature delle travi
Confronto: prescrizioni costruttive normativa ACI 318-02

Confronto: prescrizioni costruttive normativa ACI 318-02

- **LONGITUDINAL REINFORCEMENT, TOP AND BOTTOM**
 - MINIMUM $A_s = 0.025 \times \frac{1.4 \times \text{bw} \times \text{fy}}{d}$
 - MAXIMUM $d = 0.025$ of A_s

- **MINIMUM MOMENT STRENGTH AT FACE OF JOINT**
 - MINIMUM OF 2 BARS, POSITIVE MOMENT STRENGTH AT FACE AT LEAST HALF NEGATIVE MOMENT STRENGTH

ENGINEER MUST PROVIDE DIMENSIONS
- s_1, s_2, S_1, S_2 Hoop and Stirrup Spacing, Anchorage Length, Cut-Off
- Points of Discontinuous Bars, t_2, h
- f_{cd} Design Depth for $-M$ and $+M$

MAXIMUM HOOP/TIE SPACING
- IN LENGTH ST, SPACING FOR HOOPS $s_2 / 4.13$ BUT NOT GREATER THAN $4" [100 \text{mm}]$
- IN LENGTH S2, SPACING STIRRUPS $s_2 / 2$

EXAMPLES OF MULTIPLE LEG HOOPS

SPANDREL BEAM DETAIL A

STIRRUPS REQUIRED TO RESIST SHEAR SHALL BE HOOPS OVER LENGTH AS SPECIFIED IN ACI 21.3.3.5. THROUGHOUT THE LENGTH OF FLEXURAL MEMBERS WHERE HOOPS ARE NOT REQUIRED, STIRRUPS MUST BE SPACED AT NO MORE THAN $d / 2$
Fig. 3.2—Effective width at exterior connections with no transverse beam.
5.4 PILASTRI

5.4.1 Limiti dimensionali

- dimensioni minime del pilastro
 se $\theta > 0.1$, $b_{\text{min}} = 1/10$ massima distanza tra il punto di inflessione del momento flettente ($M=0$) e l’estremità del pilastro ($b_{\text{min}} = H/10$ per pilastri a mensola, $b_{\text{min}} = H/20$ per punto di inflessione a metà altezza);
 $b_{\text{min}} = 250\text{mm} \ (\text{per EC8 solo per DC H})$

5.4.2 Sollecitazioni nei Pilastri

- L’azione assiale è calcolata dall’analisi, mentre, al fine di evitare meccanismi di piano debole, il momento flettente è calcolato mediante Capacity Design (Colonna forte e Trave debole) lungo entrambi gli assi del pilastro imponendo:
 $$\sum M_{Rc} \geq \gamma_{Rd} \sum M_{Rb}$$
 dove:
 - $\sum M_{Rc}$ è la somma dei momenti resistenti del pilastro, valutati per l’azione assiale di progetto per cui $M_{Rc} = \text{min}$;
 - $\sum M_{Rb}$ è la somma dei momenti resistenti della trave convergente nel pilastro.
 - $\gamma_{Rd} = 1,30$ per CD A e $\gamma_{Rd} = 1,10$ per CD B \ (per EC8 $\gamma_{Rd} = 1,30$ sia per DC M e DC H)

- Per travi con connessioni a ripristino parziale deve essere usato il valore resistente della connessione.

- Si osserva che a rigore l’equilibri andrebbe scritto in corrispondenza del baricentro del nodo, includendo quindi i tagli all’estremità del nodo. È comunque accettabile usare i momenti resistenti all’estremità di travi e pilastri.

- Nella scrittura dell’equilibrio, si assume il nodo in equilibrio ed i momenti, sia nei pilastri che nelle travi, tra loro concordi. Nel caso in cui i momenti nel pilastro al di sopra ed al di sotto del nodo siano tra loro discordi, al denominatore della formula va posto il solo valore maggiore, il minore va sommato ai momenti resistenti delle travi.
• Per la sezione di base dei pilastri del piano terreno si adotta come momento di calcolo il maggiore tra il momento risultante dall’analisi ed il momento MC,Rd della sezione di sommità del pilastro.

• Il suddetto criterio di gerarchia delle resistenze non si applica alle sezioni di sommità dei pilastri dell’ultimo piano.

• Momenti flettenti ed azioni assiali sono determinati dall’analisi, mentre il taglio è calcolato applicando il Capacity Design, scrivendo l’equilibrio limite della trave utilizzando i momenti di estremità \(M_{id} \) illustrati in figura.

\[
V_{Ed} = \frac{M_{1d} + M_{2d}}{l_c}
\]

NTC

\[
M_{id} = \gamma_{Rd} M_{Rc,i},
\]

\(\gamma_{Rd} = 1.1 \) per DCM e \(\gamma_{Rd} = 1.30 \) per DCH

EC 8

\[
M_{id} = \gamma_{Rd} M_{Rc,i} \cdot \min\left\{1, \frac{\Sigma M_{Rb}}{\Sigma M_{Rc}}\right\},
\]

\(\gamma_{Rd} = 1.1 \) per DCM e \(\gamma_{Rd} = 1.30 \) per DCH

\(M_{Rb} \) e \(M_{Rc} \) sono i momenti resistenti all’estremità di trave e pilastro, rispettivamente, questi ultimi calcolati in corrispondenza della azione assiale di progetto per la direzione del sisma considerata.

Nel caso in cui i tamponamenti non si estendano per l’intera altezza dei pilastri adiacenti, \(V_{Ed} \) da considerare per la parte del pilastro priva di tamponamento è calcolata assumendo l’altezza \(l_c \) pari alla estensione della parte di pilastro priva di tamponamento.
5.4.3 Verifiche agli SLU di Pilastri

5.4.3.1 Classe di Duttilità B (EC8 – M)

- Il momento ed il taglio resistenti sono calcolati secondo NTC (EC2), utilizzando il valore dell’azione assiale da analisi;

- La verifica a presso-flessione deviata, può essere effettuata eseguendo la verifica secondo una direzione principale alla volta, utilizzando un momento resistente ridotto pari a 0.7M_{Rd} (equivalente ad assumere un dominio di interazione M_x-M_y rettangolare a N costante);

- In colonne sismo-resistenti primarie, \(\nu_d = N_{sd}/(A_{cf}c_{d}) \leq 0,65 \).

5.4.3.2 Prescrizioni Aggiuntive per Classe di Duttilità A (EC8 – H)

- In colonne sismo-resistenti primarie, \(\nu_d = N_{sd}/(A_{cf}c_{d}) \leq 0,55 \).

5.4.4 Dettagli Costruttivi per i Pilastri

5.4.4.1 Classe di Duttilità B (EC8 – M)

- Armatura longitudinale minima:

\[
1\% \leq \rho_l = \frac{A_s}{A_c} \leq 4\% ,
\]

Per sezioni simmetriche, l’armatura deve essere disposta simmetricamente;

- Per tutta la lunghezza del pilastro l’interasse tra le barre non deve essere superiore a 25 cm (NTC);

- Almeno una barra intermedia lungo i lati dei pilastri, per assicurare l’integrità dei nodi (min. 8 barre/pilastro, EC8);

- Lunghezza Critica alle estremità dei pilastri \(l_{cr} \):

\[
l_{cr} = \max\{h_c; l_{cl}/6; 450mm\} \ (= l_c \ se \ l_c < 3h - \text{NTC})
\]

dove \(h_c \) è la dimensione max del pilastro e \(l_{cl} \) è l’altezza libera del pilastro (\(l_c/2 \) per shear building, \(l_c \) per mensola);
Ai fini di soddisfare i criteri di duttilità locale, la duttilità in termini di curvatura dovrà essere:

\[
\mu_\phi \geq 2q_o - 1 \quad \text{se } T_1 \geq T_c \\
\mu_\phi \geq 1 + 2(q_o - 1) \frac{T_c}{T_1} \quad \text{se } T_1 < T_c
\]

- Per ottenere i valori di \(\mu_\phi \) specificati, \(\varepsilon_{cu,2} > 0,35\% \). Si deve quindi predisporre adeguata armatura di confinamento per compensare la perdita del copriferro, ed utilizzare i legami costitutivi per il calcestruzzo confinato;

- **NTC** - Se sotto l’azione del sisma la forza assiale su un pilastro è di trazione, la lunghezza di ancoraggio delle barre longitudinali deve essere incrementata del 50%

- **EC8** - La verifica di duttilità è implicitamente soddisfatta se:

\[
\alpha \omega_{wd} = 30 \mu_\phi v_d \cdot \varepsilon_{sy,d} \cdot \frac{b_c}{b_o} - 0,035
\]

Dove:

\[
\omega_{wd} = \frac{\text{volume staffe di confinamento}}{\text{volume calcestruzzo confinato}} \cdot \frac{f_{yd}}{f_{cd}} \quad \text{Perc. meccanica volumetrica;}
\]

\[
v_d = \frac{N_{sd}}{(A_{cf} f_{cd})} \quad \text{azione assiale normalizzata;}
\]

\[
\varepsilon_{sy,d} \quad \text{deformazioni a snervamento dell’ acciaio;}
\]

\[
\mu_\phi \quad \text{duttilità richiesta;}
\]

\[
h_c e h_o \quad \text{dim. max. totale e confinata del pilastro;}
\]

\[
b_c e b_o \quad \text{dim. min. totale e confinata del pilastro;}
\]

\[
\alpha = \alpha_n \cdot \alpha_s \quad \text{indice di efficienza del confinamento.}
\]

- \(\omega_{wd} \geq 0,08 \) nella zona critica alla base di una colonna primaria;
• Staffe e legature $d_{bw} \geq 6mm$ con ganci a 135° devono essere previste nelle zone critiche con il seguente passo:

 \[s \leq \min \left\{ \frac{b_o}{2}; 175mm; 8d_{bL} \right\}; \]

• La distanza tra armature longitudinali legate da staffe o legature deve essere inferiore a 200mm;

• **EC8** - L’armatura trasversale nella zona critica può essere calcolata secondo EC2 solo se $\nu_d \leq 0.2$ e $q \leq 2.0$.

5.4.4.2 Prescrizioni Aggiuntive per Classe di Duttilità A (EC8 – H)

• **EC 8** - Lunghezza Critica alle estremità dei pilastri l_{cr}:

 \[l_{cr} = \max\{1.5h_c; \frac{l_{cl}}{6}; 600mm\}, \]

 dove h_c è la dimensione massima del pilastro e l_{cl} è la luce netta;

• **EC 8** - Nei due piani inferiori di un telaio multipiano, la zona critica deve essere incrementata del 50%;

• $\omega_{wd} \geq 0.12$ nella zona critica alla base di una colonna primaria, e $\omega_{wd} \geq 0.08$ nelle rimanenti zone critiche;

• Staffe e legature con ganci a 135° (**EC8** - e $d_{bw} \geq 0.4 \cdot d_{bL,\max} \cdot \sqrt{\frac{f_{ydL}}{f_{ydw}}}$) devono essere previste in l_{cr} con passo:

 \[s \leq \min \left\{ \frac{b_o}{3}; 125mm; 6d_{bL} \right\}; \]

• La distanza tra armature longitudinali legate da staffe o legature deve essere inferiore a 150mm;

• **EC8** - La quantità di armatura longitudinale alla base del pilastro, in prossimità della fondazione, non può essere inferiore a quella posta all’intradosso del primo impalcato.
RIEPILOGO DISPOSIZIONI COSTRUTTIVE PILASTRI

Se si desidera la sostituzione per sovrapponibilità di elementi contenuti in strutture preesistenti, considerare le seguenti disposizioni:

- **Staff di contenimento dei nodi**
 - Per nodi VOR inclusi in strutture non esistenti
 - Staff = Max pilastro esp. c. inf.
 - Per nodi trasversali confinati
 - Staff possono essere diversi
 - \(s = 100 \text{ mm} \)

- **Dimensions della sezione**
 - \(h = 400 \text{ mm} \)
 - \(w = 200 \text{ mm} \)

- **Ammortatura minima**
 - \(b = 20 \) cm

- **Distanza tra ammortature longitudinali**
 - \(25 \) cm

- **Lunghezza critica**
 - \(L_{cr} = \sqrt{\frac{EI}{k}} \)

- **Staffe di contenimento e legature**
 - \(u = \frac{1}{n} L_{cr} \)

- **Staffe di legature**
 - \(u = \frac{L_{cr}}{n} \)

- **Lunghezza nodale**
 - \(L_{nod} = \max \left\{ L_{cr}, L_{max} \right\} \)

- **Staffe di contenimento**
 - Min. 8 barre per pilastro
 - Diverse lunghezze per ciascun nodo contenuto
 - Una torre ogni due contenuti da staffe e legature
 - Distanza massima tra una barra non fissata ed una fissata: 200 mm

- **Rimuovere legature**
 - \(120^\circ \)
 - \(100 \) cm
Confronto: prescrizioni costruttive normativa ACI 318-02
Esempio di pilastri sismoresistenti in struttura con solai alveolari

Armatura di un Pilastro a Stella prima del getto

Armatura di trave in una struttura con pilastri prefabbricati
5.5 Nodi Travi-Pilastro

5.5.1 Definizioni

Si definisce nodo la zona del pilastro che si incrocia con le travi ad esso concorrenti

Si distinguono due tipi di nodo:

Nodi interamente confinati, così definiti quando in ognuna delle quattro facce verticali si innesta una trave. Il confinamento si considera realizzato quando su ogni faccia la sezione della trave si sovrappone per almeno i 3/4 della larghezza del pilastro, e su entrambe le coppie di facce opposte del nodo le sezioni delle travi si ricoprono per almeno i 3/4 dell'altezza;

Nodi non interamente confinati: tutti i nodi non appartenenti alla categoria precedente.
5.6 **Comportamento di Nodi Travi-Pilastro**

Comportamento di nodi travi pilastro: (a1) nodo armato secondo normativa; (a2) nodo con confinamento ridotto; (b) dettaglio costruttivo di nodo esterno con armature inclinate aggiuntive; (c) risposta di nodo esterno con armature inclinate; (d) risposta di nodo esterno armato in maniera convenzionale.
Tipologie di collasso in nodi trave-colonna: (a) raggiungimento della capacità portante nella trave; (b) raggiungimento della capacità portante nella colonna; (c) espulsione del copriferro nel nodo; (d) collasso per ancoraggio delle armature della trave; (e) collasso a taglio del pannello di nodo.
Determinazione delle azioni nei nodi.
Meccanismi resistenti nelle verifiche
5.7 NODI TRAVI-PILASTRO

5.7.1 Sollecitazioni nei nodi (EC 8 - solo per DCH)

- Le azioni nei nodi devono essere calcolate secondo Capacity Design, utilizzando i valori delle resistenze delle travi ed il valore minimo del taglio nei pilastri;
- Il taglio nei nodi può essere calcolato come:

 \[V_{jhd} = \gamma_{Rd} (A_{s1} + A_{s2}) f_{yd} - V_C \]

 \[\begin{align*}
 A_{s1} &= \text{area dell'armatura superiore nelle travi;} \\
 A_{s2} &= \text{area dell'armatura inferiore nelle travi;}
 \end{align*} \]

 \[V_C = \text{taglio nel pilastro al di sopra del nodo, calcolato dall’analisi;} \]

 \[\gamma_{RD} = 1,20 = \text{coefficiente di sovraresistenza.} \]

5.7.2 Verifiche di resistenza (solo per CD A e DC H)

- La compressione diagonale indotta nel nodo dal meccanismo a puntone deve essere inferiore alla resistenza del calcestruzzo in presenza di trazione trasversale. A tal fine, è sufficiente verificare quanto segue:

 \[V_{jhd} \leq 0,8 \cdot \eta f_{cd} \sqrt{1 - \frac{V_d}{\eta}} \cdot b_j h_c \text{ NT}C; \]

 \[V_{jhd} \leq 0,85 \cdot \eta f_{cd} \sqrt{1 - \frac{V_d}{\eta}} \cdot b_j h_c \text{ EC 8} \]

 \[\eta = 0,6(1-f_{ck}/250) \]

 con \(f_{ck} \) espresso in MPa;

 \[V_d = N_{sd}/(A_c f_{cd}) \]

 azione assiale normalizzata nel pilastro al di sopra del nodo;

 \[b_j = \text{larghezza efficace del nodo pari a:} \]

 a) se \(b_c > b_w \): \(b_j = \min\{b_c; (b_w+0,5h_c)\} \)

 b) se \(b_c < b_w \): \(b_j = \min\{b_w; (b_c+0,5h_c)\} \)
• Deve essere posizionata nel nodo una quantità adeguata di armatura di confinamento, verticale ed orizzontale, al fine di limitare la trazione massima nel calcestruzzo ($\sigma_{ct} \leq f_{ct}$). In assenza di valutazioni più precise, ciò può essere ottenuto impiegando staffe orizzontali con $\phi_{\text{min}} = 6\text{mm}$, e tali che:

$$
\frac{A_{sh} \cdot f_{ywd}}{b_j \cdot h_{jw}} \geq \left(\frac{V_{jhd}}{f_{ctd}} \right)^2
$$

\[A_{sh} = \text{Area totale delle staffe orizzontali} \quad b_j = \text{larghezza efficace del nodo}; \]

\[V_{jhd} = \text{taglio nel nodo precedentemente definito}; \quad v_d = N_{sd}/(A_{f cd}) = \text{azione assiale normalizzata nel pilastro al di sopra del nodo}; \]

\[h_{jw} = \text{Distanza tra estradosso trave ed armatura inf.} \quad h_{jc} = \text{distanza tra le armature + esterne del pilastro}; \quad f_{ctd} = \text{resistenza a trazione di progetto del cls.} \]

• In alternativa a quanto sopra, l’integrità del nodo può essere garantita mediante staffe orizzontali che abbiano area tale da soddisfare le condizioni seguenti (si veda capacity design applicato al nodo):

Nodi interni:

$$
A_{sh} f_{ywd} \geq \gamma_{Rd} (A_{S1} + A_{S2}) f_{yd} (1 - 0,8v_d); \quad (1)
$$

\[\gamma_{Rd} = 1.2 \quad \text{Coefficiente di sovraresistenza}; \]

\[v_d = N_{sd}/(A_{f cd}) = \text{azione assiale normalizzata nel pilastro al di sopra del nodo (1), oppure al di sotto del nodo (2)}; \]

\[A_{S1} = \text{area dell’armatura inferiore nella trave}; \quad A_{S2} = \text{area dell’armatura superiore nella trave}; \]

Nodi esterni:

$$
A_{sh} f_{ywd} \geq \gamma_{Rd} A_{S2} f_{yd} (1 - 0,8v_d); \quad (2)
$$

\[A_{S1} = \text{area dell’armatura inferiore nella trave}; \quad A_{S2} = \text{area dell’armatura superiore nella trave}; \]

• Le staffe nel nodo devono essere disposte uniformemente all’interno dell’altezza h_{jw}, tra le armature inferiori e superiori della trave;

• **EC 8** - Deve essere presente una quantità di armatura verticale passante nel nodo, tale che:

$$
A_{sv,i} \geq (2/3) \cdot A_{sh} \cdot (h_{jc} / h_{jw}),
$$

dove $A_{sv,i}$ è l’area delle barre poste lungo i lati delle facce rilevanti del nodo (tutte, escluse le barre d’angolo).
5.7.3 Dettagli Costruttivi

- L’armatura di confinamento orizzontale nei nodi **non interamente confinati** deve essere almeno pari all’armatura orizzontale nella zona critica del pilastro adiacente il nodo;

- **NTC** - Per nodi non confinati, appartenenti a strutture di DC “A” e “B” deve essere verificata la seguente condizione:

\[
\frac{n_{st} \cdot A_{st}}{i \cdot b} \geq 0.05 \frac{R_{ck}}{f_{sy}}
\]

nella quale \(n_{st} \) ed \(A_{st} \) sono rispettivamente il numero di braccia e l’area della sezione trasversale di armatura della singola staffa orizzontale, \(i \) è l’interasse delle staffe, e \(b \) è la larghezza utile del nodo (**larghezza confinata, vedi sopra**).

- **EC 8** - Per i pilastri sismoresistenti primari, almeno una barra verticale intermedia deve essere presente lungo i lati del nodo, tra le armature d’angolo del pilastro.

- **NTC** - evitare per quanto possibile eccentricità tra l'asse della trave e l'asse del pilastro concorrenti in un nodo. Nel caso che tale eccentricità superi 1/4 della larghezza del pilastro la trasmissione degli sforzi deve essere assicurata da armature adeguatamente dimensionate allo scopo.
Confronto: prescrizioni costruttive normativa ACI 318-02 (ACI 352R-02)

Esempio 1 – Nodo Interno NON interamente confinato (solo i pilastri E-W coprono il 75% del pilastro)
Esempio 2 – Nodo Esterno NON interamente confinato (solo tre travi)
Esempio 3 – Nodo Interno interamente confinato con travi fuori spessore

Fig. E8.1

- Column: 500x500 mm with 8 No. 11 bars
 - Tensioned area: 1000 kN
 - Cross-sectional area of steel:

Fig. E8.2

- Typical building floor plan

Fig. E8.3

- Diagram with dimensions:
 - 5 No. 8
 - 4 No. 8
 - 3 No. 8
 - 2 No. 8

Fig. E8.4

- Assumed inflection point in the column (midheight)

Fig. E8.5

- Diagram with labels:
 - V_{ur}
 - M_{ur}
 - M_{ot}

Fig. E8.6

- Diagram with labels:
 - V_{ur}
 - T_{ur}
 - T_{ot}

Fig. E8.7

- Plan View of Connection (Top beam column)

Fig. E8.8

- Connection reinforcement

- Cross-section (Section A-A)
Esempio 4 – Nodo d’angolo

Column, 24x36' with 14 No. 9 bars
Transverse beam (N-S) 20x25' with 8 No. 8 bars, 100o and 6 No. 6, bottom
Longitudinal beam (E-W) 22x26' with 8 No. 10, 125o and 4 No. 8, bottom
Cover = 1.5 in.

Fig. E4.1

Fig. E4.3

Fig. E4.4

Fig. E4.5

Assumed inftion
point in the column
(midheight)

Fig. E4.6

Fig. E4.7

Connection reinforcement

Fig. E4.8
Esempio 5 – Nodo d’angolo con pilastro che non prosegue.

Fig. E5.1

- Column: 30”x30” with 16 No. 11 bar
- Factored axial load = 0 kips
- Beam (N-S): 18”x32” with 6 No. 8, top and 2 No. 11, bottom
- Cover = 1.5 in.

Fig. E5.3

Fig. E5.4

Fig. E5.2

- No. 4 hoops
- 16 No. 11 bars

Fig. E5.5

Fig. E5.6

- U-bar
Esempio 6 – Nodo Interno con travi in spessore.

Fig. E6.2

Fig. E6.3

Fig. E6.4

Fig. E6.5

Fig. E6.6
Esempio 7 – Nodo perimetrale con trave di spina in spessore e travi di bordo ribassate.
ESEMPI DI DETTAGLI COSTRUTTIVI

NODO DI BORDO
ESEMPI DI DETTAGLI COSTRUTTIVI
NODO D’ANGOLE
NODO DI BORDO

<table>
<thead>
<tr>
<th>Con Trave Ortagonale</th>
<th>Senza trave Ortagonale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NODO D’ANGOLO
5.8 Pareti - Definizioni (punto 5.1.2 – EC8 – analoghe per NTC)

PARETI
Elementi strutturali che supportano altri elementi ed hanno una sezione allungata con rapporto lunghezza su spessore $l_w/b_w > 4$ (Ordinanza $b_w/l_w < 0.3$)

PARETI DUTTILI
pareti incastrate alla base in maniera tale che non ci siano rotazioni relative rispetto al resto della struttura, progettate ed armate in maniera da dissipare energia per flessione in una zona plastica (cerniera plastica) posta in prossimità della base, priva di aperture o fori importanti.

GRANDI PARETI DEBOLMENTE ARMATE
pareti con elevate dimensioni trasversali, aventi cioè lunghezza $l_w \geq 4m$ oppure $l_w \geq 2/3h_w$ (altezza della parete), la quale, in presenza di azioni sismiche, svilupperà una modesta fessurazione ed esibirà un modesto comportamento non-lineare.

Nota: tali pareti tendono a dissipare energia nel terreno per radiazione, esibendo una rotazione rigida alla base (rocking). A causa delle dimensioni trasversali, non possono essere progettate per dissipare efficacemente energia tramite una cerniera plastica alla base.

PARETI ACCOPPIATE
elementi strutturali composti da due o più pareti single, connesse in maniera regolare da travi opportunamente duttili (travi di accoppiamento), tali da ridurre di almeno il 25% la somma dei momenti flettenti alla base delle pareti collegate, ipotizzate come agenti separatamente.
5.9 Comportamento di Strutture a Pareti

Pareti singole ed accoppiate

\[\frac{Tl}{M_{tot}} \]

grado di accoppiamento

\[\frac{Tl}{M_{tot}} \geq 0.25 \]

Tipologie di pareti accoppiate

Problematiche nelle pareti accoppiate
5.9.1 Meccanismi di Comportamento di Pareti Singole

pressoflessione **taglio** **scorrimento** **ribaltamento**

("rocking")

Principali meccanismi di comportamento di pareti soggette ad azioni sismiche.
Pareti in c.a. – Rottura per Presso flessione

Meccanismi di comportamento nelle travi di collegamento

Riduzione della rigidezza a taglio e “pinching” in una trave tozza (Bertero&Popov, 1977)
Meccanismo i travi di accoppiamento.

Comportamento di parete governata dal taglio.

Meccanismi di rottura a taglio in pareti tozze

(a) Comportamento ciclico di una parete tozza: (a) armata in maniera convenzionale; (b) armata con armature
Meccanismo di danno in corrispondenza di riprese di getto

Meccanismo di danno dovuto a flessione e compressione.

Meccanismo di danno divuto al taglio.

Collasso con fessure a X
5.9.2 Meccanismi di Comportamento di Travi d’accoppiamento

<table>
<thead>
<tr>
<th>Modelli per l’analisi di pareti accoppiate</th>
</tr>
</thead>
</table>

![Diagrama de Modelli per l’analisi di pareti accoppiate](image)

(a) [Outline of structure](#) [The model structure](#) [Infinitely rigid elements](#)

(b) [Diagrama de Modelli per l’analisi di pareti accoppiate](#) [F](#) [Diagrama de Modelli per l’analisi di pareti accoppiate](#) [1] [2] [3]
5.10 PARETI

5.10.1 Limiti dimensionali

- Spessore minimo dell’anima: \(b_{w0} \geq \text{max}\{150\text{mm}; \frac{h_s}{20}\} \) dove \(h_s \) è l’altezza netta di interpiano valido sia per pareti duttili sia per grandi pareti

\(b_{w0} \geq 200\text{mm} \) nel caso di travi di collegamento con armature inclinate

5.10.2 Sollecitazioni nelle Pareti

5.10.2.1 Classe di Duttilità B (EC 8 – M)

- **EC8** - Si può adottare una ridistribuzione delle azioni sismiche tra le pareti primarie, pari al più al 30% e tale per cui il taglio totale alla base non venga ridotto. Il taglio deve essere ridistribuito tra le pareti in analogia al momento flettente, così da non modificare sensibilmente il rapporto \(M/V \) in ciascuna parete, rispetto alla soluzione elastica.

- **EC8** - In pareti soggette ad elevate fluttuazioni di azione assiale, come nelle pareti accoppiate, momento e taglio possono essere ridistribuiti dagli elementi soggetti a compressione minore (o trazione), a quelli soggetti a compressione maggiore (N.B. la presenza di compressione aumenta la resistenza flessionale a parità di armatura);

- **EC8** - In pareti accoppiate, le azioni interne possono essere ridistribuite tra le travi di accoppiamento di piani diversi in ragione pari al più al 20%, purché l’azione assiale alla base di ciascuna parete (somma dei tagli sulle travi di accoppiamento) non sia modificata;

- **EC8** - Devono essere considerate le incertezze della distribuzione dei momenti flettenti lungo le pareti snelle \((h_w/l_w < 2) \), principalmente a causa di effetti di modi superiori al primo e di approssimazioni nella modellazione;

- Deve essere considerato il possibile aumento del taglio in seguito allo snervamento a flessione alla base delle pareti primarie. Ciò può essere soddisfatto prendendo un taglio di progetto pari al taglio ricavato dall’analisi, maggiorato del 50% \((V_{sd} \geq 1,5V_{analisi}) \);

- Per pareti estese debolmente armate il taglio ad ogni piano può essere ottenuto amplificando il taglio derivante dall’analisi del fattore \((q+1)/2\);
• In sistemi accoppiati (Telai + Pareti duttili), l’inviluppo dell’azione di taglio deve essere opportunamente modificato, al fine di considerare le incertezze legate all’influenza dei modi superiori;

• Se $q>2$, si deve tenere conto delle forza assiale dinamica aggiuntiva che si genera nelle pareti per effetto dell’apertura e chiusura di fessure orizzontali e del sollevamento dal suolo. In assenza di più accurate analisi essa può essere assunta pari al ±50% della forza assiale dovuta ai carichi verticali in condizioni sismiche;

a – diagramma del momento da analisi;

b – inviluppo di progetto

a_1 – tension shift. Tale distanza dovrebbe essere consistente con l’inclinazione dei puntoni nella verifica a taglio alla base. Generalmente la distanza a_1 viene assunta pari all’altezza critica nella quale si sviluppano le deformazioni plastiche.

Modifica del diagramma inviluppo del momento flettente

Linea a tratteggiata – diagramma del taglio da analisi;

Linea piena – diagramma del taglio aumentato del 50%

A – inviluppo di progetto, avente $V_{top} \geq 0.50V_{base}$

Modifica del diagramma inviluppo del Taglio per sistemi misti Telaio-Pareti
5.10.2.2 Prescrizioni Aggiuntive per le pareti di Classe A (EC 8 – H)

- Il taglio di progetto deve essere ricavato mediante Capacity Design come:

 \[V_{Ed} = \varepsilon V'_{Ed} \geq 1.5 V'_{Ed} \]

 dove: \(V'_{Ed} \) è il taglio ricavato dall’analisi e

 \[\varepsilon = q \cdot \sqrt{\left(\frac{\gamma_{Rd}}{q} \frac{M_{Rd}}{M_{Ed}} \right)^2 + 0.1 \left(\frac{S_e(T_c)}{S_e(T_1)} \right)^2} \leq q \quad \text{e} \quad \gamma_{RD} = 1.20; \]

- Per pareti tozze \((h_w/l_w < 2)\) non è necessario modificare il diagramma del momento flettente e del taglio. Il taglio di progetto si può ricavare amplificando il taglio da analisi come:

 \[V_{Ed} = \gamma_{Rd} \cdot \left(\frac{M_{Rd}}{M_{Ed}} \right) \cdot V'_{Ed} \leq q \cdot V'_{Ed} \quad \text{dove} \quad \gamma_{RD} = 1.20; \]
5.10.3 Verifiche di Resistenza di Pareti

5.10.3.1 Classe di Duttilità M

- La resistenza a flessione deve essere calcolata come per pilastri presso-inflessi, considerando tutta l’armatura verticale d’anima ai fini della valutazione della resistenza delle pareti;
- In elementi primari, l’azione assiale normalizzata deve essere inferiore a $0,4 - \frac{N_{sd}}{\nu} \leq 0,4$;
- La resistenza a taglio deve essere calcolata come per i pilastri, considerando la possibile rottura per scorrimento;
- Per le pareti estese debolmente armate occorre limitare le tensioni di compressione nel calcestruzzo per prevenire l’instabilità fuori dal piano, limitando la snellezza della zona terminale, considerata come pilastro isolato;
- Sezioni composte costituite da elementi rettangolari connessi (pareti a L-, T- U-, I-, o similari) dovrebbero essere considerate come elementi monolitici, composti da una o più anime (circa) parallele alla direzione di azione del sisma e da una o più flange (approssimativamente) normali ad esse. Ai fini del calcolo della resistenza flessionale, la larghezza efficace di una flangia dovrebbe essere presa come il valore minimo tra i seguenti:

$$l_{f,eff} = \min\left\{\begin{array}{l}
l_f - \text{Larghezza effettiva della flangia} \\
0.5d_w - \text{Metà della distanza da una flangia adiacente} \\
0.25h_w - 25\% \text{ della altezza totale della parete al di sopra della sezione considerata}
\end{array}\right\}$$
5.10.3.2 **Prescrizioni Aggiuntive per le pareti di Classe A (EC 8 - H)**

- In elementi primari, l’azione assiale normalizzata deve essere inferiore a $0,4 \cdot \frac{N_{sd}}{(A_c \cdot f_{cd})} \leq 0,4$.

- **Verifica a taglio-compressione del calcestruzzo dell’anima**

 Il valore resistente $V_{Rd,max}$ deve essere calcolato come segue:
 - fuori dalla zona critica: come per le travi utilizzando un braccio della coppia interna $z = 0,8l_w$ e $\theta=45^\circ$;
 - nella zona critica: riducendo all’40% il valore calcolato come sopra

- **Verifica a taglio-trazione dell’armatura dell’anima**

 La verifica varia al valore del rapporto di taglio $\alpha_s = \frac{M_{Ed}}{(V_{Ed}l_w)}$, dove l_w è l’altezza della sezione
 - se $\alpha_s \geq 2,0$ la verifica si esegue come per le travi utilizzando $z = 0,8l_w$ e $\theta=45^\circ$;
 - se $\alpha_s < 2,0$ (pareti tozze) si applicano le seguenti prescrizione

 $$V_{Rd} = V_{Rd,ct} + 0,75 \rho_h f_{yd,h} b_{wo} \alpha_s l_w$$
 dove $V_{Rd,ct}$ è la resistenza di elementi senza armature al taglio, valutata con $x = \frac{M_{Ed}}{V_{Ed}}$, da assumersi comunque nulla se N_{Ed} è di trazione e ρ_h è la percentuale di armatura orizzontale;

 $$\rho_h f_{yd,h} b_{wo} z \leq \rho_v f_{yd,v} b_{wo} z + \min N_{Ed}$$
 deve essere inserita una armatura verticale minima;
- **Verifica per Scorrimento a Taglio**

 In corrispondenza dei potenziali piani di scorrimento posti all’interno delle zone critiche (ad esempio alla base delle pareti, nelle riprese di getto o nei giunti costruttivi) deve risultare:

 \[V_{Ed} \leq V_{Rd,s} \]

 dove \(V_{Rd,s} = V_{dd} + V_{id} + V_{fd} \) è il valore di progetto della resistenza a taglio a scorrimento:

 \[
 V_{dd} = \min \left[1,3 \cdot \sum A_{sj} \cdot \sqrt{f_{cd} \cdot f_{yd}} \right] \]

 resistenza a spinotto delle armature che attraversano il piano;

 \[
 V_{id} = \sum A_{si} \cdot f_{yd} \cdot \cos \varphi \]

 resistenza delle armature inclinate che attraversano il piano;

 \[
 V_{fd} = \min \left[\mu \cdot \left(\sum A_{sj} \cdot f_{yd} + N_{Sd} \right) \cdot \xi + M_{Ed} / z \right] \]

 resistenza ad attrito della zona compressa;

 dove:

 \[\Sigma A_{sj} \] è la somma dell’area delle barre verticali dell’anima o di barre posizionate negli elementi di estremità aggiunte all’uopo;

 \[\Sigma A_{si} \] è la somma dell’area delle barre inclinate (angolo \(\varphi \)). Si raccomandano diametri grandi;

 \[\eta = 0,6 (l \cdot f_{ck}/250) \]

 con \(f_{ck} \) espresso in MPa;

 \[\mu \] è il coefficiente d'attrito, che sotto azioni cicliche può essere posto pari a 0.60;

 \[\xi = x/(l_{w} \cdot b_{wo}) \]

 è l'altezza della parte compressa della sezione normalizzata.

 - Le barre inclinate devono essere ancorate al di fuori del piano di scorrimento su entrambi i lati e devono incrociarsi al di sopra del piano di scorrimento entro una distanza pari a \(\min(0,5l_{w}; 0,5h_{w}) \);

 - La presenza delle barre inclinate modifica la resistenza a flessione, utilizzata per determinare \(V_{Ed} \):

 \[V_{Ed} \]

 può essere calcolata incrementando il momento \(M_{Rd} \) di \[\Delta M_{Rd} = \sum A_{si} \cdot f_{ydi} \cdot \sin \varphi \cdot l_i \]

 oppure, \[V_{id} = \sum A_{si} \cdot f_{yd} \cdot \left[\cos \varphi - 0,5l_i \cdot \sin \varphi / (\alpha_s \cdot l_{w}) \right] \]

 dove \(l_i \) è la distanza tra le barre inclinate.

 - Per pareti tozze: \(V_{id} > V_{Ed}/2 \) alla base della parete e \(V_{id} > V_{Ed}/4 \) altrove.
5.10.4 Dettagli Costruttivi per le Pareti

5.10.4.1 Classe di Duttilità M

- L’altezza della zona critica al di sopra della base della parete può essere stimata come:

\[
h_{cr} = \max[l_w, h_w / 6] \begin{cases} 2 \cdot l_w & \text{per } n \leq 6 \text{ piani (EC8)} \\ h_s & \text{per } n \geq 7 \text{ piani} \end{cases}
\]

dove \(h_s \) è l’altezza netta di interpiano, e dove la base della parete è definita dalla fondazione, oppure all’incastro del piano interrato, qualora sia presente un diaframma rigido con pareti perimetrali (fondazione scatolare).

- Nelle regioni critiche della parete deve essere garantita una duttilità minima in termini di curvatura \(\mu_\phi \) definita come:

\[
\mu_\phi = \begin{cases} 2 \cdot q - 1 & \text{se } T_1 \geq T_c \\ 1 + 2 \cdot (q - 1) \frac{T_c}{T_1} & \text{se } T_1 < T_c \end{cases}
\]

NTC

\[
\mu_\phi = \begin{cases} 2 \cdot q_0 \left(\frac{M_{Ed}}{M_{Rd}} \right)_{\text{max}} - 1 & \text{se } T_1 \geq T_c \\ 1 + 2 \cdot q_0 \left(\frac{M_{Ed}}{M_{Rd}} \right)_{\text{max}} - 1 \frac{T_c}{T_1} & \text{se } T_1 < T_c \end{cases}
\]

EC8

dove \(M_{Ed} \) e \(M_{Rd} \) sono i momenti sollecitanti e resistenti alla base della parete.
5.10.4.2 Disposizioni Costruttive NTC (CD “B” e CD “A”)

- Le armature, sia orizzontali che verticali, devono essere disposte su entrambe le facce della parete. Le armature presenti sulle due facce devono essere collegate con legature in ragione di almeno nove ogni metro quadrato.

- Il passo tra le barre deve essere non maggiore di 30 cm. Il diametro delle barre deve essere non maggiore di un decimo dello spessore della parete.

- Nell’altezza della zona inelastica di base h_{cr}, si definisce una zona “confinata” costituita dallo spessore della parete e da una lunghezza “confinata” L_c pari al 20% della lunghezza in pianta L della parete stessa e comunque non inferiore a 1.5 volte lo spessore della parete. In tale zona il rapporto geometrico ρ dell’armatura totale verticale, riferito all’area confinata, deve essere compreso tra i seguenti limiti:

 \[1\% < \rho < 4\%\]

- Nelle zone confinate l’armatura trasversale deve essere costituita da barre di diametro non inferiore a 6 mm, disposti in modo da fermare una barra verticale ogni due con un passo non superiore a 8 volte il diametro della barra o a 10 cm. Le barre non fissate devono trovarsi a meno di 15 cm da una arra fissata.

- Nella rimanente parte della parete, in pianta ed in altezza, vanno seguite le regole delle condizioni non sismiche, con un minimo di armatura minima orizzontale e verticale pari allo 0.2 %, per controllare la fessurazione da taglio.
5.10.4.3 Disposizioni Costruttive (EC 8 – DC M e DC H)

- **EC8** - In assenza di verifiche specifiche, tale valore di duttilità può essere ottenuto mediante la realizzazione di **elementi di estremità** confinati, la cui estensione e quantità di **armatura di confinamento** è definita nel seguito;

Estensione dell’elemento di estremità

(zona nella quale si prevede sia superata la def. del CLS non confinato \(\varepsilon_{cu} = 0.35-0.4\% \))

\[
\varepsilon_{cu2} = 0.35\%
\]

\[
\varepsilon_{cu2,c} = 0.0035 + 0,1 \alpha \omega_{wd}
\]

Larghezza minima el. di estremità: \(b_w \geq 200mm \)

\[
l_c,\min \geq \min\{0,15l_w; 1,50b_w\}
\]

Armatura di confinamento

\[
\alpha \omega_{wd} \geq 30 \mu_{\phi} (\nu_d + \omega_v) \varepsilon_{sy,d} \frac{b_c}{b_0} - 0,035
\]

dove:

\[
\omega_{wd} = \frac{\text{Vol. Staffe Conf}}{\text{Vol. cls. conf}} \cdot \frac{f_{yd}}{f_{cd}} \% \text{ mecc. vol. confin.}
\]

\(\mu_{\phi} \) duttilità richiesta, definita sopra;

\[
\nu_d = \frac{N_{sd}}{A_c \cdot f_{cd}} \text{ azione assiale normalizzata;}
\]

\[
\omega_v = \rho_v \cdot \frac{f_{yd,v}}{f_{cd}} \% \text{ meccanica armatura verticale;}
\]

\(\varepsilon_{sy,d} \) val. di progetto della def. di snervamento;

\(\alpha = \alpha_n \cdot \alpha_s \) fattore di efficacia del confinamento

\[
\alpha_n = 1 - \sum_{n} \frac{b_i^2}{6b_o / h_o}
\]

\[
\alpha_s = (1 - \frac{s}{2b_o})(1 - \frac{s}{2h_o})
\]
- l’armatura trasversale negli elementi di confinamento può essere determinata secondo EC2 qualora:
 \[\nu_d \leq 0,15 \text{ oppure } \nu_d \leq 0,20 \text{ e } q \text{ viene ridotto del } 15\% \]
- la percentuale di armatura longitudinale negli elementi di estremità è pari a \(\rho \geq 0,5\% \);
- almeno una armatura longitudinale sì ed una no devono essere legate da staffe o legature;
- al di sopra della zona critica si applicano le regole da EC2. Comunque, in tutte le zone dove è attesa una deformazione del cls \(\varepsilon_c > 0,2\% \), la percentuale di armatura longitudinale deve essere pari a \(\rho \geq 0,5\% \);
- nel caso di elementi di estremità con larghezza maggiore dell’anima vengono date indicazioni specifiche;
- per pareti con flange, non è richiesta armatura di confinamento se la larghezza della flangia ed il suo spessore sono pari almeno a quanto indicato in figura, dove \(h_s \) è l’altezza netta di interpiano.
5.10.4.4 **Prescrizioni Aggiuntive per le pareti di Classe H (solo EC 8)**

- Se la parete è connessa ad una flangia con $h_f \geq h_s/15$ e $b_f \geq h_s/5$ e se l’elemento di estremità si estende all’interno dell’anima oltre la flangia per non più di $3b_{wo}$, allora la larghezza minima dell’elemento di estremità è pari a $b_{w0} \geq \max\{150\text{mm}; \frac{h_s}{20}\}$

- All’interno degli elementi di estremità si prescrive che le staffe rispettino i requisiti geometrici delle colonne in classe H e che $\omega_{wd} \geq 0.12$. Inoltre, negli elementi di estremità almeno una armatura longitudinale sì ed una no devono essere legate da staffe o legature

- Gli elementi di estremità si devono estendere di un ulteriore piano al di sopra della zona critica;

- Deve essere prevista una armatura d’anima orizzontale e verticale minima $\rho_{h,\text{min}} = \rho_{v,\text{min}} = 0.002$;

- L’armatura di parete deve essere costituita da una maglia di armature con le medesime caratteristiche di aderenza, collegate da spilli con spaziatura circa pari a 500m;

- L’armatura d’anima deve avere $\phi \geq 8\text{mm}$ ma $\phi \leq b_{wo}/8$. Il passo deve essere $s_w \leq \min\{250\text{mm}, 25\phi\}$;

- Per compensare gli effetti sfavorevoli della fessurazione nelle riprese di getto (problemi di scorrimento), deve essere prevista la seguente armatura minima attraverso la ripresa:

$$\rho_{\text{min}} \geq \begin{cases} 1.3 \cdot f_{cd} - \frac{N_{Ed}}{A_w} / (f_{yd} \cdot (1 + 1.5 \sqrt{f_{cd} / f_{yd}})) \quad \text{dove } A_w \text{ è l’area trasversale della parete} \\ 0.0025 \end{cases}$$
RIEPILOGO DISPOSIZIONI COSTRUTTIVE PARETI

ARMATURA PILASTRINO
per h≤L

10\(\phi\)

h > 200mm

Staffe o Legature
Devono fermare tutte le barre
\(\phi > 8\text{mm}\)
\(s \leq \text{min.} \quad \frac{10\phi_i}{250\text{mm}}\)

PERCENTUALE
DI ARMATURA
nella zona confinata
1% \(\leq \rho \leq 4\%
orizzontale e verticale
\rho > 0,2\%

Armatura per Flessione

Staffe o legature

FONDAZIONE

Amatura Diagonale può essere utile per la verifica a scorrimento

ARMATURA TRASVERSALE

\(s \leq 300\text{mm}\)
\(\phi \leq \text{B/10}\)

0,2L

Legature min. 9m²

Passo \(\leq 300\text{mm}\)
\(\phi \leq \text{B/10}\)
5.11 EC8 - Travi di Collegamento (DC H)

- Accoppiamento dovuto a solette non deve essere considerato, non essendo efficace (insufficiente rigidezza);
- Le travi di accoppiamento vengono considerate come travi snelle se:
 - a) è improbabile che si manifesti fessurazione diagonale in entrambe le direzioni: \(V_{Ed} \leq f_{ctd} \cdot b_w \cdot d \)
 - b) è prevedibile un collasso prevalentemente flesionale (travi snelle) \(l/h \geq 3 \)
- In caso contrario, la resistenza sismica deve essere garantita da armatura a croce di S.Andrea.

\[
V_{Ed} \leq 2 \cdot A_{si} \cdot f_{yd} \cdot \sin \alpha \quad \text{dove:}
\]

- \(V_{Ed} \) è il taglio di progetto \((V_{Ed} = 2 \cdot M_{Ed}/l) \)
- \(A_{si} \) area totale delle armature in ogni direzione diagonale

- Armatura diagonale deve essere disposta analogamente a quella di pilastri, con \(b \geq 0.5b_w \) e confinata con staffe chiuse (ganci a 135°) con passo \(s \leq 100mm \). La lunghezza di ancoraggio deve essere aumentato del 50%;
- Deve essere aggiunta armatura longitudinale e trasversale in quantità almeno pari a \(\phi 10 \) passo 10x10. L’armatura longitudinale può estendersi nelle pareti per soli 150mm.
- **NTC** - almeno 2 barre \(\phi 16 \) mm ai bordi superiore ed inferiore
RIEPILOGO DISPOSIZIONI COSTRUTTIVE TRAVI DI COLLEGAMENTO

\[s \leq 100\text{mm} \]
\[L_{\text{anc}} > 1,5 \cdot L_{b,\text{net}} \]

Rete \(\phi10 \) 100x100 su entrambe le facce
Esempio di setto sismo-resistente

Dettagli armatura nello spigolo
Esempio di armatura di parete

Armatura ad X per travi di accoppiamento prima del getto

Disposizione di armatura attorno alle finestre in pareti in c.a.
Esempi di Pareti
Esempi di Travi di Accoppiamento
5.12 Il Ruolo dei Tamponamenti nella Risposta Sismica

E’ necessario distinguere due tipi di problemi:

- l’eventuale interazione meccanica, favorevole o sfavorevole, dei tamponamenti con la struttura, con una conseguente significativa modifica della risposta strutturale rispetto a quanto si avrebbe in assenza di tale interazione;

- il danneggiamento dei tamponamenti stessi per effetto delle deformazioni impresse dalla risposta sismica della struttura (SLD: inagibilità dell’edificio, SLU: crollo o espulsione dei tamponamenti).
Interazione dei tamponamenti con la struttura – Effetti Globali

Tamponamenti distribuiti
irregolarmente in pianta:
spostamento del centro di
rigidezza con conseguenti
effetti torsionali

Tamponamenti distribuiti
irregolarmente in elevazione:
possibile creazione di un
piano debole

Interazione dei tamponamenti con la struttura – Effetti Locali

Danno ai pilastri per effetto delle forze
concentrate esercitate dai
tamponamenti
Effetto di tamponature parziali - creazione di colonne tozze con conseguente rottura a taglio

Espulsione del paramento esterno in mattoni a vista (Fabriano, sisma umbro-marchigiano, 1997) – debolezza del vincolo dei tamponamenti nei confronti del collasso fuori piano
Danneggiamento di pilastri in contatto con tamponamenti su un solo lato

Danneggiamento dei tamponamenti: (a) distacco dal telaio; (b) Fessure ad X.
Disposizione di armature e meccanismi di collasso in pilastri corti: (a) Armatura convenzionale con staffe ravvicinate; (b) Staffe ed armatura ad X; (c) Armatura a rombo e staffe.
5.13 EC8 – Effetti dei Tamponamenti sulle Strutture

5.13.1 Irregolarità dovute alla presenza dei tamponamenti

5.13.1.1 Irregolarità in pianta

- Dovevrebbero essere evitate distribuzioni di tamponamenti fortemente irregolari in pianta o elevazione (considerando anche l’estensione e la posizione delle aperture nei tamponamenti);

- Nel caso di forte irregolarità in pianta, è necessario utilizzare un modello tridimensionale della struttura e modellare l’effetto dei tamponamenti, tenendo conto della incertezza delle proprietà meccanica e della posizione delle stesse. Dovrebbe essere effettuato anche uno studio di sensibilità al riguardo della posizione e della proprietà dei tamponamenti, ad esempio trascursando la presenza di un pannello ogni tre o quattro, in particolare nella direzione meno rigida dell’edificio. Deve essere posta particolare attenzione alla valutazione degli effetti torsionali legati alla presenza dei tamponamenti;

- Tamponamenti con una o più aperture significative (es. porte o finestre) dovrebbero essere trascurati;

- Nel caso di moderata irregolarità in pianta, è sufficiente raddoppiare l’eccentricità accidentale delle masse.

5.13.1.2 Irregolarità in elevazione

- In caso ci siano forti irregolarità in elevazione devono essere aumentate le azioni sul piano ove si ha riduzione dei tamponamenti mediante un coefficiente pari a:

\[\eta = (1 + \Delta V_{Rw} / \Sigma V_{Sd}) \leq q \quad \text{(se } \eta \leq 1, l'effetto può essere trascurato) \]

dove \(\Delta V_{Rw} \) è la riduzione totale della resistenza dei tamponamenti al piano considerato, calcolata rispetto al piano superiore con il maggior numero di tamponamenti, e \(\Sigma V_{Sd} \) è la somma dei tagli agenti negli elementi resistenti primari del piano.
5.13.2 Limitazione del danno nei tamponamenti

- indipendentemente dalla classe di duttilità, devono essere prese adeguate contromisure per evitare rotture fragili premature dei tamponamenti, così come per evitare il collasso fuori piano dei pannelli o di loro parte. Deve essere posta particolare attenzione ai pannelli il cui rapporto di snellezza sia inferiore a 15 (min\{l_w/t_w; h_w/t_w\}<15);
- per aumentare la resistenza sia nel piano sia fuori piano si può applicare una rete nell’intonaco su un lato della muratura, utilizzare armature longitudinali inglobate nei letti di malta, e vincolate nei pilastri;
- se ci sono aperture importanti nei pannelli, esse dovrebbero essere incorniciate da cordoli in c.a.

Esempio di rinforzo di tamponamento (Calvi & Bolognini, 1999).

(a) tamponatura semplice drift 0,4%, (b) tamponatura con rete in acciaio da 1mm, drift da 0,4%.
5.13.3 Effetti locali dovuti a tamponamenti in muratura o calcestruzzo

- A causa della particolare vulnerabilità dei tamponamenti al piano terra, deve essere previsto l’insorgere di irregolarità strutturali e devono essere prese misure adeguate. In mancanza di valutazioni più precise, l’intera lunghezza dei pilastri al piano terra dovrebbe essere considerata come critica, e confinata di conseguenza;

- Se i tamponamenti sono più corti dell’intera lunghezza dei pilastri adiacenti (insorgenza di colonne tozze):

 a) l’intera altezza del pilastro deve essere considerata critica, ed armata di conseguenza (staffe);

 b) deve essere considerata la riduzione della luce di taglio dei pilastri, calcolando il taglio sollecitante mediante capacity design, adottando come luce la lunghezza del pilastro non in contatto con i tamponamenti, ed un coefficiente di sovraresistenza $\gamma_{Rd} = 1.1$ o 1.3 per DCM e DCH, rispettivamente;

 c) l’armatura a taglio (staffe) così calcolate devono essere distribuite sulla lunghezza non in contatto con i tamponamenti, ed estese per una lunghezza h_c (dimensione della sezione del pilastro nel piano del tamponamento) nel pilastro, nella zona in contatto con i tamponamenti;

 d) se la lunghezza del pilastro non in contatto con il tamponamento è inferiore a $1.5 h_c$, il taglio deve essere resistito da armature inclinate;

- Se i tamponamenti sono presenti su un solo lato di un pilastro, e si estendono per l’intera lunghezza dello stesso (es. pilastri d’angolo), l’intera lunghezza dovrebbe essere considerata come critica ed armata di conseguenza;

- La lunghezza l_c sulla quale viene applicata la forza di taglio dovuta ai tamponamenti (zona interessata dal puntone della muratura, la cui larghezza può essere presa pari ad una frazione della lunghezza della diagonale del pannello, es. $L/10$) deve essere verificata a taglio per il valore minore delle seguenti forze di taglio: (a) la componente orizzontale del puntone nel tamponamento, valutata sulla base della resistenza dei letti di malta; (b) valutata sulla base dell’applicazione del capacity design sul pilastro considerando una lunghezza l_c.
5.14 NTC – Effetti dei Tamponamenti sulle Strutture

Tutti gli elementi costruttivi senza funzione strutturale, il cui danneggiamento può provocare danni a persone, dovranno in generale essere verificati all’azione sismica, insieme alle loro connessioni alla struttura. L’effetto dell’azione sismica potrà essere valutato considerando una forza \(F_a \) applicata al baricentro dell’elemento non strutturale, valutata come:

\[
F_a = \frac{W_a S_a \gamma_i}{q_a}
\]

Dove:
- \(W_a \) è il peso dell’elemento;
- \(\gamma_i \) è il fattore di importanza della costruzione;
- \(q_a \) è il fattore di struttura dell’elemento, pari ad 1 per elementi aggettanti a mensola (es. camini e parapetti collegati alla struttura alla base) e pari a 2 negli altri casi (es. pannelli di tamponamento e controsoffitti);
- \(S_a \) è il coefficiente di amplificazione di cui alla relazione seguente

\[
S_a = \frac{S_{ag} \left(\frac{3(1+Z/H)}{1+(1-T_a/T_1)^2} - 0.5 \right)}{g} \geq \frac{S_{ag}}{g}
\]

dove:
- \(S_{ag} \) è l’accelerazione di progetto al terreno;
- \(Z \) è l’altezza del baricentro dell’elemento rispetto alla fondazione;
- \(H \) è l’altezza della struttura;
- \(g \) è l’accelerazione di gravità;
- \(T_a \) è il primo periodo (anche stimato) di vibrazione dell’elemento non strutturale nella direzione considerata;
- \(T_1 \) è il primo periodo di vibrazione della struttura nella direzione considerata.

Gli effetti dei tamponamenti sulla risposta sismica vanno considerati nei modi e nei limiti descritti per ciascun tipo costruttivo.

- Nelle verifiche agli SLD si impongono limiti sugli spostamenti di interpiano, pari a 0,5% \(h \) per le strutture con tamponamenti rigidi, costruiti in aderenza alla struttura.
• Le prescrizioni si riferiscono a edifici in c.a. con tamponamenti in muratura non collaboranti, costruiti dopo la maturazione della struttura, tradizionalmente considerati come elementi non strutturali. È necessario considerare:
 - le conseguenze di possibili irregolarità in pianta o in altezza provocate dalla disposizione dei tamponamenti
 - gli effetti locali dovuti all’interazione fra telai e tamponamenti, trascurando l’effetto delle tamponature “deboli” (spessore non superiore a 100mm).
• Se la distribuzione dei tamponamenti è fortemente irregolare in pianta, gli effetti sulla distribuzione delle forze deve essere considerato, raddoppiando l’eccentricità accidentale da applicare alla risultante delle forze sismiche di piano \(e_a = 0.05L \cdot 2 \), con \(L \) dimensione max. dell’edificio in direzione ortogonale al sisma;
• Se la distribuzione dei tamponamenti è fortemente irregolare in elevazione, si dovrà considerare la possibilità di forte concentrazioni di danno ai piano dove si ha una significativa riduzioni di tamponature. Questo requisito si intende soddisfatto incrementando le azioni di calcolo sugli elementi verticali (pilastri e pareti) dei piani con riduzione dei tamponamenti per un fattore 1.4;
- Limitazioni di danni ai tamponamenti, si dovranno adottare misure atte ad evitare collassi fragili e prematuri dei tamponamenti esterni e la possibile espulsione di elementi in muratura in direzione perpendicolare al piano della muratura. Metodi suggeriti:

 - inserimento di leggere reti di acciaio (es. diametro 1 mm, passo 10-20 mm) sui due lati della muratura, collegate tra loro a distanza < 500 mm;

 - inserimento di armature orizzontali nei letti di malta a interasse non superiore a 500 mm (es. tralicci con diametro 5mm)

Nota: le tecniche sopra suggerite sono efficaci per tamponature interamente confinate dal telaio in c.a., grazie all’meccanismo di resistenza “ad arco” che si oppone all’espulsione fuori dal piano. Per tamponature esterne non confinate del telaio (es. faccia a vista) è necessario introdurre dei collegamenti al paramento interno confinato dal telaio o alla struttura in c.a..

Meccanismo ad arco